BAFILOMYCIN A1 AT NANOMOLAR CONCENTRATIONS SATURABLY INHIBITS A PORTION OF TURTLE BLADDER ACIDIFICATION CURRENT

Author:

YOUMANS STEVEN J.1,BARRY CATHERINE R.2

Affiliation:

1. Author for correspondence (e-mail: syoumans@iris.nyit.edu)

2. Department of Physiology, New York College of Osteopathic Medicine,New York Institute of Technology, Old Westbury, Long Island, NY 11568-8000,USA

Abstract

SUMMARY An earlier report indicated that acid secretion in turtle urinary bladder is driven by an unusual vacuolar H+-ATPase and that the ATPase accounts for essentially all acid secreted. These results, however, are difficult to reconcile with the acid transporters currently ascribed to the renal collecting duct. Here, we re-examine the effect of bafilomycin A1, an inhibitor of vacuolar (V-type) H+-ATPases, on acid secretion by intact isolated bladders from Pseudemys scriptaturtles. Serosal-side bafilomycin had no effect on the transepithelial acidification current (AC). In the mucosal solution, bafilomycin inhibited the AC, with inhibition developing over the range 0.1-10 nmol l-1, with a sigmoidal dose—response curve, and an IC50 of 0.47 nmol l-1. At saturation, approximately 70 % of H+ secretion was inhibited. The remaining 30 % could be abolished by 30 μmol l-1 Sch-28080, which is a level that in other systems is known to inhibit H+/K+-ATPase transport activity specifically and essentially completely. When the order of addition was reversed (Sch-28080 first), there was no change in the magnitude of the effect produced by either inhibitor, and the two together again eliminated the AC. The data indicate that baseline acid secretion in intact bladders is due (i) in part to a highly bafilomycin-sensitive process, with sensitivity typical of vacuolar H+ ATPases; and (ii) in part to a more bafilomycin-resistant process that is sensitive to Sch-28080.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3