Glucose activates H+-ATPase in kidney epithelial cells

Author:

Nakamura Suguru

Abstract

The vacuolar H+-ATPase (V-ATPase) acidifies compartments of the vacuolar system of eukaryotic cells. In renal epithelial cells, it resides on the plasma membrane and is essential for bicarbonate transport and acid-base homeostasis. The factors that regulate the H+-ATPase remain largely unknown. The present study examines the effect of glucose on H+-ATPase activity in the pig kidney epithelial cell line LLC-PK1. Cellular pH was measured by performing ratiometric fluorescence microscopy using the pH-sensitive indicator BCECF-AM. Intracellular acidification was induced with NH3/NH4+prepulse, and rates of intracellular pH (pHi) recovery (after in situ calibration) were determined by the slopes of linear regression lines during the first 3 min of recovery. The solutions contained 1 μM ethylisopropylamiloride and were K+free to eliminate Na+/H+exchange and H+-K+-ATPase activity. After NH3/NH4+-induced acidification, LLC-PK1cells had a significant pHirecovery rate that was inhibited entirely by 100 nM of the V-ATPase inhibitor concanamycin A. Acute removal of glucose from medium markedly reduced V-ATPase-dependent pHirecovery activity. Readdition of glucose induced concentration-dependent reactivation of V-ATPase pHirecovery activity within 2 min. Glucose replacement produced no significant change in cell ATP or ADP content. H+-ATPase activity was completely inhibited by the glycolytic inhibitor 2-deoxy-d-glucose (20 mM) but only partially inhibited by the mitochondrial electron transport inhibitor antimycin A (20 μM). The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (500 nM) abolished glucose activation of V-ATPase, and activity was restored after wortmannin removal. Glucose activates V-ATPase activity in kidney epithelial cells through the glycolytic pathway by a signaling pathway that requires PI3K activity. These findings represent an entirely new physiological effect of glucose, linking it to cellular proton secretion and vacuolar acidification.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3