Effects of high extracellular [K+] and adrenaline on force development, relaxation and membrane potential in cardiac muscle from freshwater turtle and rainbow trout

Author:

Nielsen J.S.1,Gesser H.1

Affiliation:

1. Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark.

Abstract

Increases in extracellular K(+) concentrations reduced the twitch force amplitude of heart muscle from the freshwater turtle (Trachemys scripta elegans) and rainbow trout (Oncorhynchus mykiss). Adrenaline augmented twitch force amplitude and reduced the relative influence of [K(+)]. In the absence of adrenaline, high [K(+)] had less effect in reducing twitch force in turtle than in trout, whereas the reverse was true in the presence of adrenaline. Under anoxic conditions, twitch force was lower in 10 mmol l(−1) than in 2.5 mmol l(−1) K(+) in both preparations, but adrenaline removed this difference. A further analysis of turtle myocardium showed that action potential duration was shorter and resting potential more positive in high [K(+)] than in low [K(+)]. Adrenaline restored the duration of the action potential, but did not affect the depolarisation, which may attenuate Na(+)/Ca(2+) exchange, participating in excitation/contraction coupling. The contractile responses in the presence of adrenaline were, however, similar in both high and low K(+) concentrations when increases in extracellular Ca(2+) were applied to increase the demand on excitation/contraction coupling. The possibilities that adrenaline counteracts the effects of high [K(+)] via the sarcoplasmic reticulum or sarcolemmal Na(+)/K(+)-ATPase were examined by inhibiting the sarcoplasmic reticulum with ryanodine (10 micromol l(−1)) or Na(+)/K(+)-ATPase with ouabain (0.25 or 3 mmol l(−)). No evidence to support either of these possibilities was found. Adrenaline did not protect all aspects of excitation/contraction coupling because the maximal frequency giving regular twitches was lower at 10 mmol l(−1) K(+) than at 2.5 mmol l(−1) K(+).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3