Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction

Author:

Kramer Richard H.1,Molokanova Elena1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA

Abstract

SUMMARY Cyclic-nucleotide-gated (CNG) channels are crucial for sensory transduction in the photoreceptors (rods and cones) of the vertebrate retina. Light triggers a decrease in the cytoplasmic concentration of cyclic GMP in the outer segments of these cells, leading to closure of CNG channels and hyperpolarization of the membrane potential. Hence, CNG channels translate a chemical change in cyclic nucleotide concentration into an electrical signal that can spread through the photoreceptor cell and be transmitted to the rest of the visual system. The sensitivity of phototransduction can be altered by exposing the cells to light, through adaptation processes intrinsic to photoreceptors. Intracellular Ca2+ is a major signal in light adaptation and, in conjunction with Ca2+-binding proteins, one of its targets for modulation is the CNG channel itself. However, other intracellular signals may be involved in the fine-tuning of light sensitivity in response to cues internal to organisms. Several intracellular signals are candidates for mediating changes in cyclic GMP sensitivity including transition metals, such as Ni2+ and Zn2+, and lipid metabolites, such as diacylglycerol. Moreover, CNG channels are associated with protein kinases and phosphatases that catalyze changes in phosphorylation state and allosterically modulate channel activity. Recent studies suggest that the effects of circadian rhythms and retinal transmitters on CNG channels may be mediated by such changes in phosphorylation. The goal of this paper is to review the molecular mechanisms underlying modulation of CNG channels and to relate these forms of modulation to the regulation of light sensitivity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3