D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors

Author:

Akopian A.1,Witkovsky P.1

Affiliation:

1. Department of Ophthalmology, New York University Medical Center, NewYork 10016, USA.

Abstract

1. Using the whole cell patch clamp method, we investigated the effect of dopamine on a hyperpolarization-activated current (Ih) in the inner segments of rod photoreceptors of the Xenopus retina. 2. Ih was elicited by hyperpolarizing voltage steps to -120 mV from a holding potential of -40 mV. Dopamine reversibly reduced Ih in a dose-dependent manner. Dopamine-mediated inhibition of Ih was blocked by the D2 dopamine antagonist sulpiride. 3. The D2 dopamine agonist quinpirole (0.1-20 microM) inhibited Ih whereas the D1 agonist SKF-38393 (100 microM) had no effect on Ih. Quinpirole-induced inhibition of Ih was blocked by sulpiride, but not by the D4 antagonist, clozapine. The D3 agonists (+/-)-7-hydroxy-2-dipropylaminotetralin hydrochloride and trans-7-hydroxy-2[N-propyl-N-(3'-iodo-2'-propenyl)amino]-tetralin maleate were, respectively, 5 and 100 times less effective than quinpirole in inhibiting Ih. 4. Quinpirole failed to reduce Ih when the internal solution contained GDP beta S (500 microM). Internal application GTP gamma S (300 microM) progressively and irreversibly reduced Ih and blocked a further reduction by quinpirole, indicating that the inhibition of Ih by quinpirole involves a G protein. 5. The inhibition of Ih by quinpirole was not affected by intracellularly applied adenosine 3',5'-cyclic monophosphate (cAMP) or by the protein kinase inhibitor H-7, indicating that a cAMP-mediated second messenger cascade does not participate in the dopamine-mediated inhibition. 6. Ih was not altered when the patch pipette contained a nominally Ca(2+)-free internal solution, but the inhibition of Ih by quinpirole was abolished, suggesting an involvement of Ca(2+) in the quinpirole-induced effect. 7. We conclude that a D2 dopamine receptor modulates Ih through the activation of a G protein and that intracellular Ca2+, but not cAMP, plays a key role in this process. 8. The reduction of Ih by dopamine may reduce the ability of rods to signal time-modulated light stimuli.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3