Intestinal iron uptake in the European flounder (Platichthys flesus)

Author:

Bury N. R.1,Grosell M.2,Wood C. M.2,Hogstrand C.1,Wilson R. W.3,Rankin J. C.4,Busk M.4,Lecklin T.4,Jensen F. B.4

Affiliation:

1. Division of Health and Life Sciences, King’s College London, 150 Stamford Street, London SE1 9NN, UK,

2. Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1,

3. School of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, UK and

4. Institute of Biology, SDU, Odense University, Campusvej 55, Odense, Denmark

Abstract

SUMMARY Iron is an essential element because it is a key constituent of the metalloproteins involved in cellular respiration and oxygen transport. There is no known regulated excretory mechanism for iron, and homeostasis is tightly controlled via its uptake from the diet. This study assessed in vivo intestinal iron uptake and in vitro iron absorption in a marine teleost, the European flounder Platichthys flesus. Ferric iron, in the form 59FeCl3, was reduced to Fe2+ by ascorbate, and the bioavailability of Fe3+ and Fe2+ were compared. In vivo Fe2+ uptake was significantly greater than Fe3+ uptake and was reduced by the iron chelator desferrioxamine. Fe2+ was also more bioavailable than Fe3+ in in vitro studies that assessed the temporal pattern and concentration-dependency of iron absorption. The posterior region, when compared with the anterior and mid regions of the intestine, was the preferential site for Fe2+ uptake in vivo. In vitro iron absorption was upregulated in the posterior intestine in response to prior haemoglobin depletion of the fish, and the transport showed a Q10 value of 1.94. Iron absorption in the other segments of the intestine did not correlate with haematocrit, and Q10 values were lower. Manipulation of the luminal pH had no effect on in vitro iron absorption. The present study demonstrates that a marine teleost absorbs Fe2+ preferentially in the posterior intestine. This occurs in spite of extremely high luminal bicarbonate concentrations recorded in vivo, which may be expected to reduce the bioavailability of divalent cations as a result of the precipitation as carbonates (e.g. FeCO3).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3