Affiliation:
1. Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
2. Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Abstract
SUMMARY
Shrimps belong to the class Crustacea, which forms a large, diverse group in the invertebrates. However, the physiology and biochemistry of their skeletal muscles have been poorly understood compared with those from vertebrates including mammals and fish. The present study focused on myosin, the major protein in skeletal muscle, from adult specimens of kuruma shrimp Marsupenaeus japonicus. Two types of the gene encoding myosin heavy chain (MHC), a large subunit of the myosin molecule, were cloned from abdominal fast skeletal muscle and defined as MHCa and MHCb. Protein analysis revealed that the MHCa isoform was expressed at a higher level than the MHCb isoform. The full-length cDNA clones of MHCa and MHCb consisted of 5929 bp and 5955 bp, respectively, which encoded 1912 and 1910 amino acids, respectively. Both were classified into fast muscle type by comparison with the partially deduced amino acid sequences of fast-type and slow-type (S1, slow twitch) MHCs reported previously for the American lobster Homarus americanus. The amino acid identities between MHCa and MHCb of kuruma shrimp were 78%, 60% and 72% in the regions of subfragment-1, subfragment-2 and light meromyosin, respectively, and 71% in total. In situ hybridisation using anti-sense RNA-specific probes, along with northern blot analysis using different tissues from abdominal muscle, revealed the different localisation of MHCa and MHCb transcripts in abdominal fast skeletal muscle, suggesting their distinct physiological functions.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献