Channeling vorticity: Modeling the filter-feeding mechanism in silver carp using μCT and 3D PIV

Author:

Cohen Karly E.1,Hernandez L. Patricia1ORCID,Crawford Callie H.2,Flammang Brooke E.2ORCID

Affiliation:

1. The George Washington University, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd St NW, Washington, DC, 20052, USA

2. New Jersey Institute of Technology, Department of Biological Sciences, University Heights, Newark, NJ 07102, USA

Abstract

Invasive silver carp are thriving within eutrophic environments in the United States due in part to their highly efficient filter-feeding mechanism. Like many filter feeding fishes, silver carp utilize modified gill rakers to capture a specific range of food; however, the greatly modified filtering morphology of silver carp allows them to feed on phytoplankton and zooplankton ranging in size from 4-85μm. The filtering apparatus of silver carp is comprised of rigid filtering plates where the outer anatomy of these plates is characterized by long parallel channels (riddled with openings of different sizes) that change in orientation along the length of the plate. Here we investigate the underlying morphology and concomitant hydrodynamics that support the filtration mechanisms of silver and bighead carp. Bighead carp are also invasive filter feeders but their filtering apparatus is morphologically distinct from silver carp composed of thin, flattened individual rakers more similar to that of filter feeders such as Brevoortia sp. or Anchoa sp. Gill rakers from adult silver and bighead carp were scanned using a micro CT scanner at 15.2 micron and 17.0 micron voxel resolution, respectively. Scans were segmented and reconstructed in 3D, printed as a 3D structure in resin, and placed in a 2200 L recirculating flow tank (into which 50 micron buoyant particles had been added) with water flowing across the model in an anteroposterior direction. Using 3D PIV, we determined how particles and fluid interact with the surface of the gill rakers/plates. Filtering plates in silver carp induce strong directed vortical flow whereas the filtering apparatus of bighead carp resulted in a type of haphazard crossflow filtration. The organized vortical flow established by silver carp likely increased the number of interactions that the particle-filled water has with the filtering membrane. This strong vortical organization is maintained only at 0.75BL(body lengths)/s and vortical flow is poorly developed and maintained at slower and faster speeds. Moreover, we found that absolute vorticity magnitude in silver carp is an order of magnitude greater than in bighead carp. Vortical flow established in the silver carp model suggests that this species is a more effective and likely efficient filter feeder than bighead carp, perhaps explaining the success of silver carp as an invasive species.

Funder

Directorate for Biological Sciences

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference29 articles.

1. Gill rakers in six teleost species: influence of feeding habit and body size;Almeida;Ciencia Rural,2013

2. Relationship between gill raker morphology and feeding habits of hybrid bigheaded carps (Hypophthalmichthys spp.);Battonyai;Knowledge Manag. Aquat. Ecosyst.,2015

3. Gill raker analysis and speciation in the thread herring genus Opisthonema;Berry;Int. Am. Trop. Tuna Comm.,1963

4. Epibranchial organs in lower teleostean fishes—an example of structural adaptation;Bertmar;Int. Rev. Gen. Exp. Zool.,1969

5. Dynamic cross flow filtration;Bott;Chem. Eng. J.,2000

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3