Formation of a fringe: A look inside baleen morphology using a multimodal visual approach

Author:

Vandenberg Megan L.12,Cohen Karly E.12ORCID,Rubin Robert D.3,Goldbogen Jeremy A.4ORCID,Summers Adam P.12ORCID,Paig‐Tran E. W. Misty5ORCID,Kahane‐Rapport Shirel R.5ORCID

Affiliation:

1. Department of Biology University of Washington Seattle Washington USA

2. Friday Harbor Laboratories University of Washington Friday Harbor Washington USA

3. Santa Rosa College Santa Rosa California USA

4. Hopkins Marine Station Stanford University Pacific Grove California USA

5. California State University Fullerton California USA

Abstract

AbstractFilter‐feeding has been present for hundreds of millions of years, independently evolving in aquatic vertebrates' numerous times. Mysticete whales are a group of gigantic, marine filter‐feeders that are defined by their fringed baleen and are divided into two groups: balaenids and rorquals. Recent studies have shown that balaenids likely feed using a self‐cleaning, cross‐flow filtration mechanism where food particles are collected and then swept to the esophagus for swallowing. However, it is unclear how filtering is achieved in the rorquals (Balaenopteridae). Lunging rorqual whales engulf enormous masses of both prey and water; the prey is then separated from the water through baleen plates lining the length of their upper jaw and positioned perpendicular to flow. Rorqual baleen is composed of both major (larger) and minor (smaller) keratin plates containing embedded fringe that extends into the whale's mouth, forming a filtering fringe. We used a multimodal approach, including microcomputed tomography (µCT) and scanning electron microscopy (SEM), to visualize and describe the variability in baleen anatomy across five species of rorqual whales, spanning two orders of magnitude in body length. For most morphological measurements, larger whales exhibited hypoallometry relative to body length. µCT and SEM revealed that the major and minor plates break away from the mineralized fringes at variable distances from the gums. We proposed a model for estimating the effective pore size to determine whether flow scales with body length or prey size across species. We found that pore size is likely not a proxy for prey size but instead, may reflect changes in resistance through the filter that affect fluid flow.

Publisher

Wiley

Subject

Developmental Biology,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3