Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5

Author:

Reecy J.M.1,Li X.1,Yamada M.1,DeMayo F.J.1,Newman C.S.1,Harvey R.P.1,Schwartz R.J.1

Affiliation:

1. Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. schwartz@bcm.tmc.edu

Abstract

Nkx2-5 marks the earliest recognizable cardiac progenitor cells, and is activated in response to inductive signals involved in lineage specification. Nkx2-5 is also expressed in the developing foregut, thyroid, spleen, stomach and tongue. One approach to elucidate the signals involved in cardiogenesis was to examine the transcriptional regulation of early lineage markers such as Nkx2-5. We generated F0 transgenic mice, which carry Nkx2-5 flanking sequences linked to a lacZ reporter gene. We identified multiple regulatory regions located within the proximal 10.7 kb of the Nkx2-5 gene. In addition to a proximal promoter, we identified a second promoter and a novel upstream exon that could participate in the regulation of Nkx2-5 transcription. Although used rarely in normal development, this novel exon could be spliced into the Nkx2-5 coding region in several ways, thereby potentially creating novel Nkx2-5 protein isoforms, whose transcriptional activity is greatly diminished as compared to wild-type Nkx2-5. An enhancer that directs expression in pharynx, spleen, thyroid and stomach was identified within 3.5 kb of exon 1 between the coding exon 1 and the novel upstream exon 1a. Two or more enhancers upstream of exon 1a were capable of driving expression in the cardiac crescent, throughout the myocardium of the early heart tube, then in the outflow tract and right ventricle of the looped heart tube. A negative element was also located upstream of exon1a, which interacted in complex ways with enhancers to direct correct spatial expression. In addition, potential autoregulatory elements can be cooperatively stimulated by Nkx2-5 and GATA-4. Our results demonstrate that a complex suite of interacting regulatory domains regulate Nkx2-5 transcription. Dissection of these elements should reveal essential features of cardiac induction and positive and negative signaling within the cardiac field.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3