Affiliation:
1. Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
Abstract
Our previous studies in both mouse and human identified the Bapx1 homeobox gene, a member of the NK gene family, as one of the earliest markers for prechondrogenic cells that will subsequently undergo mesenchymal condensation, cartilage production and, finally, endochondral bone formation. In addition, Bapx1 is an early developmental marker for splanchnic mesoderm, consistent with a role in visceral mesoderm specification, a function performed by its homologue bagpipe, in Drosophila. The human homologue of Bapx1 has been identified and mapped to 4p16.1, a region containing loci for several skeletal diseases. Bapx1 null mice are affected by a perinatal lethal skeletal dysplasia and asplenia, with severe malformation or absence of specific bones of the vertebral column and cranial bones of mesodermal origin, with the most severely affected skeletal elements corresponding to ventral structures associated with the notochord. We provide evidence that the failure of the formation of skeletal elements in Bapx1 null embryos is a consequence of a failure of cartilage development, as demonstrated by downregulation of several molecular markers required for normal chondroblast differentiation (α 1(II) collagen, Fgfr3, Osf2, Indian hedgehog, Sox9), as well as a chondrocyte-specific alpha1 (II) collagen-lacZ transgene. The cartilage defects are correlated with failed differentiation of the sclerotome at the time when these cells are normally initiating chondrogenesis. Loss of Bapx1 is accompanied by an increase in apoptotic cell death in affected tissues, although cell cycling rates are unaltered.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献