The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen

Author:

Tribioli C.1,Lufkin T.1

Affiliation:

1. Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA.

Abstract

Our previous studies in both mouse and human identified the Bapx1 homeobox gene, a member of the NK gene family, as one of the earliest markers for prechondrogenic cells that will subsequently undergo mesenchymal condensation, cartilage production and, finally, endochondral bone formation. In addition, Bapx1 is an early developmental marker for splanchnic mesoderm, consistent with a role in visceral mesoderm specification, a function performed by its homologue bagpipe, in Drosophila. The human homologue of Bapx1 has been identified and mapped to 4p16.1, a region containing loci for several skeletal diseases. Bapx1 null mice are affected by a perinatal lethal skeletal dysplasia and asplenia, with severe malformation or absence of specific bones of the vertebral column and cranial bones of mesodermal origin, with the most severely affected skeletal elements corresponding to ventral structures associated with the notochord. We provide evidence that the failure of the formation of skeletal elements in Bapx1 null embryos is a consequence of a failure of cartilage development, as demonstrated by downregulation of several molecular markers required for normal chondroblast differentiation (α 1(II) collagen, Fgfr3, Osf2, Indian hedgehog, Sox9), as well as a chondrocyte-specific alpha1 (II) collagen-lacZ transgene. The cartilage defects are correlated with failed differentiation of the sclerotome at the time when these cells are normally initiating chondrogenesis. Loss of Bapx1 is accompanied by an increase in apoptotic cell death in affected tissues, although cell cycling rates are unaltered.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3