Concepts and limitations for learning developmental trajectories from single cell genomics

Author:

Tritschler Sophie123,Büttner Maren14,Fischer David S.13,Lange Marius14,Bergen Volker14,Lickert Heiko256ORCID,Theis Fabian J.14ORCID

Affiliation:

1. Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany

2. Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany

3. TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85353 Freising, Germany

4. Department of Mathematics, Technische Universität München, 85748 Garching, Germany

5. German Center for Diabetes Research, 85764 Neuherberg, Germany

6. Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany

Abstract

ABSTRACT Single cell genomics has become a popular approach to uncover the cellular heterogeneity of progenitor and terminally differentiated cell types with great precision. This approach can also delineate lineage hierarchies and identify molecular programmes of cell-fate acquisition and segregation. Nowadays, tens of thousands of cells are routinely sequenced in single cell-based methods and even more are expected to be analysed in the future. However, interpretation of the resulting data is challenging and requires computational models at multiple levels of abstraction. In contrast to other applications of single cell sequencing, where clustering approaches dominate, developmental systems are generally modelled using continuous structures, trajectories and trees. These trajectory models carry the promise of elucidating mechanisms of development, disease and stimulation response at very high molecular resolution. However, their reliable analysis and biological interpretation requires an understanding of their underlying assumptions and limitations. Here, we review the basic concepts of such computational approaches and discuss the characteristics of developmental processes that can be learnt from trajectory models.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3