Coupling of dynamic microtubules to F-actin by Fmn2 regulates chemotaxis of neuronal growth cones

Author:

Kundu Tanushree1,Dutta Priyanka1ORCID,Nagar Dhriti1,Maiti Sankar2,Ghose Aurnab1ORCID

Affiliation:

1. Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India

2. Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India

Abstract

ABSTRACT Dynamic co-regulation of the actin and microtubule subsystems enables the highly precise and adaptive remodelling of the cytoskeleton necessary for critical cellular processes, such as axonal pathfinding. The modes and mediators of this interpolymer crosstalk, however, are inadequately understood. We identify Fmn2, a non-diaphanous-related formin associated with cognitive disabilities, as a novel regulator of cooperative actin–microtubule remodelling in growth cones of both chick and zebrafish neurons. We show that Fmn2 stabilizes microtubules in the growth cones of cultured spinal neurons and in vivo. Super-resolution imaging revealed that Fmn2 facilitates guidance of exploratory microtubules along actin bundles into the chemosensory filopodia. Using live imaging, biochemistry and single-molecule assays, we show that a C-terminal domain in Fmn2 is necessary for the dynamic association between microtubules and actin filaments. In the absence of the cross-bridging function of Fmn2, filopodial capture of microtubules is compromised, resulting in destabilized filopodial protrusions and deficits in growth cone chemotaxis. Our results uncover a critical function for Fmn2 in actin–microtubule crosstalk in neurons and demonstrate that the modulation of microtubule dynamics via associations with F-actin is central to directional motility.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Council of Scientific and Industrial Research, India

Indian Institute of Science Education and Research Pune

University Grants Commission

Department of Science and Technology, Ministry of Science and Technology, India

EMBO

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3