Passive water collection with the integument: mechanisms and their biomimetic potential

Author:

Comanns Philipp1ORCID

Affiliation:

1. RWTH Aachen University, Institute of Biology II (Zoology), Worringerweg 3, 52074 Aachen, Germany

Abstract

ABSTRACT Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals – in excess of 39 species from 24 genera – have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced.

Funder

Horizon 2020

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference144 articles.

1. Mass production of bio-inspired structured surfaces;Abbott;Proc. Inst. Mech. Eng.,2007

2. Polydimethylsiloxane based microfluidic diode;Adams;J. Micromech. Microeng.,2005

3. Fog collection by mimicking nature;Ahmad;J. Biomim. Biomater. Tissue Eng.,2010

4. Lipid-reduced evaporative water loss in two arboreal hylid frogs;Amey;Comp. Biochem. Physiol. Part A Physiol.,1995

5. Water collection by the body in a viperid snake, Bothrops moojeni;Andrade;Amphibia Reptil.,2000

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3