Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro

Author:

Dzementsei Aliaksandr1,Schneider David2,Janshoff Andreas2,Pieler Tomas1

Affiliation:

1. Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany

2. Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, 37077 Göttingen, Germany

Abstract

Summary The directional migration of primordial germ cells (PGCs) to the site of gonad formation is an advantageous model system to study cell motility. The embryonic development of PGCs has been investigated in different animal species, including mice, zebrafish, Xenopus and Drosophila. In this study we focus on the physical properties of Xenopus laevis PGCs during their transition from the passive to the active migratory state. Pre-migratory PGCs from Xenopus laevis embryos at developmental stages 17–19 to be compared with migratory PGCs from stages 28–30 were isolated and characterized in respect to motility and adhesive properties. Using single-cell force spectroscopy, we observed a decline in adhesiveness of PGCs upon reaching the migratory state, as defined by decreased attachment to extracellular matrix components like fibronectin, and a reduced adhesion to somatic endodermal cells. Data obtained from qPCR analysis with isolated PGCs reveal that down-regulation of E-cadherin might contribute to this weakening of cell-cell adhesion. Interestingly, however, using an in vitro migration assay, we found that movement of X. laevis PGCs can also occur independently of specific interactions with their neighboring cells. The reduction of cellular adhesion during PGC development is accompanied by enhanced cellular motility, as reflected in increased formation of bleb-like protrusions and inferred from electric cell-substrate impedance sensing (ECIS) as well as time-lapse image analysis. Temporal alterations in cell shape, including contraction and expansion of the cellular body, reveal a higher degree of cellular dynamics for the migratory PGCs in vitro.

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference40 articles.

1. [Molecular mechanisms of germ cell line determination in animals].;Berekelia;Mol. Biol. (Mosk.),2005

2. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish.;Blaser;J. Cell Sci.,2005

3. Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series.;Cannon;Physica A,1997

4. Blebs lead the way: how to migrate without lamellipodia.;Charras;Nat. Rev. Mol. Cell Biol.,2008

5. Life and times of a cellular bleb.;Charras;Biophys. J.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3