An inductive role for the endoderm in Xenopus cardiogenesis

Author:

Nascone N.1,Mercola M.1

Affiliation:

1. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

Abstract

Heart induction in Xenopus has been thought to be dependent primarily on the interaction of the heart primordia with the Spemann organizer. We demonstrate, however, that signals derived from the deep dorsoanterior endoderm during early gastrulation are also essential for heart formation. The presence of deep endoderm dramatically enhances heart formation in explants of heart primordia, both in the presence and absence of organizer. Likewise, extirpation of the entire endoderm can decrease the frequency of heart formation in embryos that retain organizer activity. Finally, we show that the combined presence of both endoderm and organizer is necessary and sufficient to induce heart in ventral mesoderm explants that would not otherwise form heart tissue. Xenopus heart induction, therefore, may be a multistep process requiring separate dorsalization and cardiogenic signalling events. This is the first demonstration of a heart-inducing role for the endoderm in Xenopus, indicating that the mechanism of heart formation may be similar in most vertebrates.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference14 articles.

1. An experimental analysis of the determination and differentiation of the mesodermal structures of neurula in urodeles.;Chuang;Scientia Sinica,1957

2. Heart induction: distribution of active factors in newt endoderm.;Fullilove;J. Exp. Zool,1970

3. The influences of ectoderm and endoderm on heart differentiation in the newt.;Jacobson;Dev. Biol,1960

4. Heart determination in the newt.;Jacobson;J. Exp. Zool,1961

5. Heart induction in salamanders.;Jacobson;J. Exp. Zool,1968

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3