Cardiopharyngeal Mesoderm specification into cardiac and skeletal muscle lineages in gastruloids

Author:

Argiro LaurentORCID,Chevalier Céline,Choquet CarolineORCID,Nandkishore NityaORCID,Ghata Adeline,Baudot AnaïsORCID,Zaffran StéphaneORCID,Lescroart FabienneORCID

Abstract

AbstractCardiopharyngeal mesoderm contributes to the formation of the heart and head muscles. However, the mechanisms governing cardiopharyngeal mesoderm specification remain unclear. Indeed, there is a lack of anin vitromodel replicating the differentiation of both heart and head muscles to study these mechanisms. Such models are required to allow live-imaging and high throughput genetic and drug screening. Here, we show that the formation of self-organizing or pseudo-embryos from mouse embryonic stem cells (mESCs), also called gastruloids, reproduces cardiopharyngeal mesoderm specification towards cardiac and skeletal muscle lineages. By conducting a comprehensive temporal analysis of cardiopharyngeal mesoderm establishment and differentiation in gastruloids and comparing it to mouse embryos, we present the first evidence for skeletal myogenesis in gastruloids. By inferring lineage trajectories from the gastruloids single-cell transcriptomic data, we further suggest that heart and head muscles formed in gastruloids derive from cardiopharyngeal mesoderm progenitors. We identify different subpopulations of cardiomyocytes and skeletal muscles, which most likely correspond to different states of myogenesis with “head-like” and “trunk-like” skeletal myoblasts. These findings unveil the potential of mESC-derived gastruloids to undergo specification into both cardiac and skeletal muscle lineages, allowing the investigation of the mechanisms of cardiopharyngeal mesoderm differentiation in development and how this could be affected in congenital diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3