Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos

Author:

Sasaki H.1,Ferguson-Smith A.C.1,Shum A.S.1,Barton S.C.1,Surani M.A.1

Affiliation:

1. Wellcome/CRC Institute of Cancer and Developmental Biology, University of Cambridge, UK.

Abstract

The mouse H19 gene is imprinted so that the paternal copy is both methylated and repressed during fetal development. However, the CpG-rich promoter region encompassing the transcription start is not methylated in sperm; this region must therefore become methylated postzygotically. We first examined the timing of DNA methylation of this region and the corresponding expression of H19. Both parental copies are initially undermethylated in blastocysts and the paternal copy then becomes fully methylated in the embryo around implantation; this methylation is more protracted in the extraembryonic lineages, especially in the trophoblast. By contrast to the lineage-dependent methylation, we observed exclusive expression of the maternal copy in preimplantation embryos and in all the lineages of early postimplantation embryos although variability may exist in cultured embryos. This indicates that methylation of the CpG-rich promoter is not a prerequisite for the paternal repression. We then examined whether methylation and expression occurs appropriately in the absence of a maternal or a paternal genome. Both H19 copies in androgenetic embryos are fully methylated while they are unmethylated in parthenogenetic embryos. This correlates with the lack of expression in androgenetic embryos but expression in parthenogenetic embryos. However, the androgenetic trophoblast was exceptional as it shows reduced methylation and expresses H19. These results suggest that promoter methylation is not the primary inactivation mechanism but is a stabilizing factor. Differential methylation in the more upstream region, which is established in the gametes, is a likely candidate for the gametic signal and may directly control H19 activity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3