Epigenetic mechanisms underlying the imprinting of the mouse H19 gene.

Author:

Bartolomei M S,Webber A L,Brunkow M E,Tilghman S M

Abstract

The expression of the H19 gene is governed by parental imprinting in mammals. H19, an unusual gene encoding an RNA with no known function, is exclusively expressed from the maternal chromosome. In mouse, it lies 90 kb downstream from the Igf2 gene, which encodes a fetal-specific growth factor, insulin-like growth factor II, and is expressed primarily from the paternally inherited chromosome. In this report we have utilized interspecific hybrid mice to identify male-specific DNA methylation of a 7- to 9-kb domain surrounding the H19 gene and its promoter. This allele-specific methylation could function as a mark to suppress transcription of the H19 paternal allele. Consistent with this proposal, the H19 promoter displayed an open chromatin conformation only on the relatively unmethylated active maternal allele. In contrast, a cell type-specific enhancer that lies outside the methylation domain is hypersensitive to restriction enzyme digestion in nuclei on both maternal and paternal chromosomes. That the allele-specific methylation domain, coupled to the two H19 enhancers, contains all the information necessary for its imprinting was tested by examining two transgenic lines containing an internally deleted H19 transgene. Both displayed paternal-specific methylation of the transgene and maternal-specific expression. Although neither line has been tested in an inbred genetic background, and therefore the action of complex modifiers cannot be formally excluded, the result suggests that the sequences necessary for the imprinting of H19 have been identified.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference45 articles.

1. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers

2. Methylation patterns of testis-specific genes.

3. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA.;Eur. J. Biochem.,1980

4. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus

5. Parental imprinting of mouse chromosome 7.;Sem. Dev. Biol.,1992

Cited by 451 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3