Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90α autocrine signaling to promote keratinocyte migration

Author:

Woodley David T.1,Fan Jianhua1,Cheng Chieh-Fang1,Li Yong1,Chen Mei1,Bu Guojun2,Li Wei1

Affiliation:

1. Department of Dermatology and the USC-Norris Comprehensive Cancer Center, the University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA

2. The Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63130, USA

Abstract

Hypoxia is a microenvironmental stress in many pathological conditions, including wound healing and tumor invasion. Under hypoxia, the cells are forced to adapt alternative and self-supporting mechanisms. Understanding these mechanisms may lead to new insights into human disorders. We report here a novel autocrine signaling mechanism by which hypoxia promotes human keratinocyte (HK) migration. First, hypoxia triggers HKs to secrete heat shock protein 90-alpha (HSP90α) via a HIF1-dependent pathway. The secreted HSP90α in turn promotes migration, but not proliferation, of the cells. Disruption of the secretion or extracellular function of HSP90α blocked hypoxia-stimulated HK migration. The ubiquitously expressed surface receptor, LRP1 (LDL-receptor-related protein 1), mediates the HSP90α signaling. Inhibition of LRP1 binding to extracellular HSP90α by neutralizing antibodies or genetic silencing of the LRP1 receptor by RNAi completely nullified hypoxia-driven HK migration. Finally, re-introducing a RNAi-resistant LRP1 cDNA into LRP1-downregulated HKs rescued the motogenic response of the cells to hypoxia. We propose that the hypoxia-HSP90α-LRP1 autocrine loop provides previously unrecognized therapeutic targets for human disorders such as chronic wounds and cancer invasion.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3