Transforming Growth Factor α (TGFα)-Stimulated Secretion of HSP90α: Using the Receptor LRP-1/CD91 To Promote Human Skin Cell Migration against a TGFβ-Rich Environment during Wound Healing

Author:

Cheng Chieh-Fang1,Fan Jianhua1,Fedesco Mark1,Guan Shengxi1,Li Yong1,Bandyopadhyay Balaji1,Bright Alexandra M.1,Yerushalmi Dalia1,Liang Mengmeng1,Chen Mei1,Han Yuan-Ping2,Woodley David T.1,Li Wei1

Affiliation:

1. Department of Dermatology and Norris Comprehensive Cancer Center

2. Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California 90033

Abstract

ABSTRACT Jump-starting and subsequently maintaining epidermal and dermal cell migration are essential processes for skin wound healing. These events are often disrupted in nonhealing wounds, causing patient morbidity and even fatality. Currently available treatments are unsatisfactory. To identify novel wound-healing targets, we investigated secreted molecules from transforming growth factor α (TGFα)-stimulated human keratinoytes, which contained strong motogenic, but not mitogenic, activity. Protein purification allowed us to identify the heat shock protein 90α (hsp90α) as the factor fully responsible for the motogenic activity in keratinocyte secretion. TGFα causes rapid membrane translocation and subsequent secretion of hsp90α via the unconventional exosome pathway in the cells. Secreted hsp90α promotes both epidermal and dermal cell migration through the surface receptor LRP-1 (LDL receptor-related protein 1)/CD91. The promotility activity resides in the middle domain plus the charged sequence of hsp90α but is independent of the ATPase activity. Neutralizing the extracellular function of hsp90α blocks TGFα-induced keratinicyte migration. Most intriguingly, unlike the effects of canonical growth factors, the hsp90α signaling overrides the inhibition of TGFβ, an abundant inhibitor of dermal cell migration in skin wounds. This finding provides a long-sought answer to the question of how dermal cells migrate into the wound environment to build new connective tissues and blood vessels. Thus, secreted hsp90α is potentially a new agent for wound healing.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3