Peroxisomes induced in Candida boidinii by methanol, oleic acid and D-alanine vary in metabolic function but share common integral membrane proteins

Author:

Goodman J.M.1,Trapp S.B.1,Hwang H.1,Veenhuis M.1

Affiliation:

1. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235.

Abstract

Peroxisomes massively proliferate in the methylotrophic yeast Candida boidinii when cultured on methanol as the only carbon and energy source. These organelles contain enzymes that catalyze the initial reactions of methanol utilization. The membranes contain abundant proteins of unknown function; their apparent molecular masses are 20, 31, 32 and 47 × 10(3) Mr and are termed PMP20, PMPs31-32 and PMP47. Recently, we reported that peroxisomes in this yeast are also induced by oleic acid and D-alanine as carbon sources, and that these peroxisomes contain increased concentrations of the enzymes of fatty acid beta-oxidation or D-amino acid oxidase, respectively. This report extends these findings and further compares the enzyme composition from peroxisomes induced by methanol, oleic acid and D-alanine. the patterns of matrix proteins represented on SDS-polyacrylamide gels from peroxisomes induced by oleic acid or D-alanine were found to be very different from those of peroxisomes induced by methanol. In order to differentiate between membrane proteins that have specific functions in pathways of substrate utilization from those with more generalized functions, peroxisomal membranes from cultures grown on methanol, oleic acid or D-alanine were purified. Analysis of these fractions demonstrated that while PMP20 is found only in peroxisomes induced by methanol, the PMPs31-32 and PMP47 were the abundant peroxisomal membrane proteins (PMP) regardless of inducing substrate. The data strongly suggest that the function of PMP20 is related to methanol metabolism. In contrast, the functions of PMPs31-32 and PMP47 are ‘substrate-nonspecific’. We speculate that they may relate to the structure, assembly or general function of the organelle.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3