Multiple Targeting Modules on Peroxisomal Proteins Are Not Redundant: Discrete Functions of Targeting Signals within Pmp47 and Pex8p

Author:

Wang Xiaodong1,McMahon Moira A.1,Shelton Shary N.1,Nampaisansuk Mongkol1,Ballard Johnathan L.1,Goodman Joel M.1

Affiliation:

1. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041

Abstract

Several peroxisomal proteins have two nonoverlapping targeting signals. These signals have been termed “redundant” because targeting can still occur with only one signal. We now report that separate targeting motifs within both Pmp47 and Pex8 provide complementary function. Pmp47 is an ATP translocator that contains six transmembrane domains (TMDs). We had previously shown that the TMD2 region (termed TMD2R, consisting of TMD2 and a short adjacent segment of cytosolic loop) was required for targeting to proliferated peroxisomes in Saccharomyces cerevisiae. We now report that the analogous TMD4R, which cannot target to proliferated peroxisomes, targets at least as well, or much better (depending on strain and growth conditions) in cells containing only basal (i.e., nonproliferated) peroxisomes. These data suggest differences in the targeting pathway among peroxisome populations. Pex8p, a peripheral protein facing the matrix, contains a typical carboxy terminal targeting sequence (PTS1) that has been shown to be nonessential for targeting, indicating the existence of a second targeting domain (not yet defined in S. cerevisiae); thus, its function was unknown. We show that targeting to basal peroxisomes, but not to proliferated peroxisomes, is more efficient with the PTS1 than without it. Our results indicate that multiple targeting signals within peroxisomal proteins extend coverage among heterogeneous populations of peroxisomes and increase efficiency of targeting in some metabolic states.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3