Affiliation:
1. Zoologisches Institut, Universitat Munchen, Germany.
Abstract
Co-ordinated cell movement of tens of thousands of cells and periodic signals characterise the multicellular development of the cellular slime mould Dictyostelium discoideum. We investigated cell movement by analysing time-lapse video recordings made during the slug stage and the culmination phase of Dictyostelium development. Slugs viewed from the side showed an even, straight forward movement with the tip slightly raised in the air. Slugs that had migrated for a prolonged period of time either culminated or showed a behaviour best described as abortive culmination. Culmination is initiated by a local aggregation of anterior-like cells at the base of the slug at the prestalk-prespore boundary, where they form a stationary mass of cells. Prespore cells continue to move forward over this stationary pile and, as a result, are lifted into the air. The stationary group of anterior-like cells thereby end up to the back of the slug. At this point the slug either falls back on the agar surface or continues culmination. If the slug continues to migrate these cells regain motility, move forward to the prespore-prestalk boundary and form a new pile again. In the case of culmination the neutral red stained cells in the pile move to the back of the slug and form a second signalling centre beside the tip. Both centres are characterised by vigorous rotational cell movement. The cells belonging to the basal centre will form the basal disc and the lower cup in the fruiting body. The upper cup will be formed by the prestalk cells rotating most vigorously at the prestalk-prespore boundary. The remaining neutral red stained anterior-like cells in the prespore zone sort either to the upper or lower organising centre in the fruiting body.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献