Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin

Author:

Cubitt A.B.1,Firtel R.A.1,Fischer G.1,Jaffe L.F.1,Miller A.L.1

Affiliation:

1. Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.

Abstract

To examine the patterns of high free cytosolic calcium or [Ca2+]i during Dictyostelium's development, we expressed apoaequorin in D. discoideum, reconstituted aequorin and observed the resultant patterns of calcium-dependent luminescence. Specific, high calcium zones are seen throughout normal multicellular development and are roughly coincident with those regions that later differentiate into stalk or stalk-like cells. A slug, for example, shows a primary high calcium zone within its front quarter and a secondary one around its tail; while a mound shows such a zone around the periphery of its base. Combined with previous evidence, our findings support the hypothesis that high [Ca2+]i feeds back to favor the stalk pathway. We also discovered several high calcium zones within the mound's base that do not coincide with any known prepatterns in D. discoideum. These include two, relatively persistent, antipodal strips along the mound's periphery. These various persistent zones of high calcium are largely made up of frequent, 10 to 30 second long, semiperiodic calcium spikes. Each of these spikes generates a correspondingly short-lived, 200 to 500 microns long, high calcium band which extends along the nearby surface. Similar, but relatively large and infrequent, spikes generate cross bands which extend across migrating slugs and just behind their advancing tips as well as across the peripheries of rotating mounds and midway between their antipodal strips. Moreover, calcium has a doubling time of about a second as various spikes rise. This last observation suggests that the calcium bands seen in Dictyostelium may be generated by so-called fast calcium waves.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3