Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration

Author:

Mullen L.M.1,Bryant S.V.1,Torok M.A.1,Blumberg B.1,Gardiner D.M.1

Affiliation:

1. Department of Developmental and Cell Biology, University of California Irvine 92697-2275, USA.

Abstract

Dlx-3, a homolog of Drosophila Dll, has been isolated from an axolotl blastema cDNA library, and its expression in developing and regenerating limbs characterized. The normal expression pattern, and the changes that occur during experimental treatments, indicate a correlation between Dlx-3 expression and the establishment of the outgrowth-permitting epidermis. Dlx-3 is expressed at high levels in a distal-to-proximal gradient in the epidermis of developing limb buds, and is upregulated in the apical ectodermal cap (AEC) during limb regeneration. Expression is maximal at the late bud stage of regeneration, coincident with the transition from the early phase of nerve dependency to the later phase of nerve independence. Dlx-3 expression in the epidermis is rapidly downregulated by denervation during the nerve-dependent phase and is unaffected by denervation during the nerve-independent phase. We investigated this relationship between nerves and Dlx-3 expression by implanting FGF-2 beads into regenerates that had been denervated at a nerve-dependent stage. Dlx-3 expression was maintained by FGF-2 after denervation, and regeneration progressed to completion. In addition, we detected FGF-2 protein in the AEC and in nerves, and observed that the level of expression in both tissues decreases dramatically in response to denervation. We conclude that both limb development and regeneration require a permissive epidermis, characterized by Dlx-3 and FGF expression, both of which are maintained by FGF through an autocrine loop. The transformation of the limb epidermis into a functional AEC that produces and responds to FGF autocatalytically, is presumed to be induced by FGF. Since nerves appear to be a source of this priming FGF, it is possible that a member of the FGF family of growth factors is the elusive neurotrophic factor of limb regeneration.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3