Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves

Author:

Niederlander C.1,Lumsden A.1

Affiliation:

1. Department of Developmental Neurobiology, UMDS Guy's Hospital, London, UK.

Abstract

Morphological segmentation of the avian hindbrain into rhombomeres is also reflected by the emergent organisation of branchiomotor nerves. In each case, the motor neurons of these nerves lie in two adjacent rhombomeres (e.g. of the Vth nerve in r2 and r3, VIIth in r4 and r5 etc.), and their outgrowing axons emerge into the periphery through defined exit points in rhombomeres r2, r4 and r6, respectively. Sensory axons of the cranial ganglia also enter the neuroepithelium at the same points. Motor axon outgrowth through experimentally rotated rhombomeres has suggested that a chemoattractive mechanism, involving the exit points, may form a component of their guidance. Yet so far, nothing is known about the establishment of the exit points or the identity of the cells that form them. In this study, we describe a group of late emigrating cranial neural crest cells which populate specifically the prospective exit points. Using chimaeras in which premigratory chick neural crest had been replaced orthotopically by quail cells, a population of neural crest was found to leave the cranial neural tube from about stage 10+ onwards and to migrate directly to the prospective exit points. These cells define the exit points by stage 12+, long before either motor or sensory axons have grown through them. The entire neural crest population of exit point cells expresses the recently described cell adhesion molecule c-cad7. Further, heterotopic grafting experiments show that midbrain and spinal cord crest, grafted at late stages in place of r4 crest, share the same migratory behaviour to the facial nerve exit points and express the same markers as cells contributed by the native r4 crest. It was not possible to generate new exit points in odd numbered rhombomeres simply by experimentally increasing their (normally insignificant) amount of crest production. Initiation of the exit point region probably lies, therefore, in the neuroepithelium.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3