Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain

Author:

Graham A.1,Heyman I.1,Lumsden A.1

Affiliation:

1. MRC Brain Development Programme, United Medical School, Guy's Hospital, London.

Abstract

Neural crest cells originate at three discontinuous levels along the rostrocaudal axis of the chick rhombencephalon, centred on rhombomeres 1 and 2, 4 and 6, respectively. These are separated by the odd-numbered rhombomeres r3 and r5 which are depleted of migratory neural crest cells. Here we show elevated levels of apoptosis in the dorsal midline of r3 and r5, immediately following the formation of these rhombomeres at the developmental stage (10–12) when neural crest cells would be expected to emerge at these neuraxial levels. These regions are also marked by their expression of members of the msx family of homeobox genes with msx-2 expression preceding apoptosis in a precisely colocalised pattern. In vitro and in ovo experiments have revealed that r3 and r5 are depleted of neural crest cells by an interaction within the neural epithelium: if isolated or distanced from their normal juxtaposition with even-numbered rhombomeres, both r3 and r5 produce migrating neural crest cells. When r3 or r5 are unconstrained in this way, allowing production of crest, msx-2 expression is concomitantly down regulated. This suggests a correlation between msx-2 and the programming of apoptosis in this system. The hindbrain neural crest is thus produced in discrete streams by mechanisms intrinsic to the neural epithelium. The crest cells that enter the underlying branchial region are organised into streams before they encounter the mesodermal environment lateral to the neural tube. This contrasts sharply with the situation in the trunk where neural crest production is uninterrupted along the neuraxis and the segmental accumulation of neurogenic crest cells is subsequently founded on an alternation of permissive and non-permissive qualities of the local mesodermal environment.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Emerging Roles of the Cephalic Neural Crest in Brain Development and Developmental Encephalopathies;International Journal of Molecular Sciences;2023-06-07

2. Key separable events in the remodelling of the pharyngeal arches;Journal of Anatomy;2023-02-23

3. The Neural Crest and Craniofacial Malformations;Clinical Neuroembryology;2023

4. Early development of the breathing network;Respiratory Neurobiology - Physiology and Clinical Disorders, Part I;2022

5. Programmed Cell Death Not as Sledgehammer but as Chisel: Apoptosis in Normal and Abnormal Craniofacial Patterning and Development;Frontiers in Cell and Developmental Biology;2021-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3