Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila

Author:

Bopp D.1,Calhoun G.1,Horabin J.I.1,Samuels M.1,Schedl P.1

Affiliation:

1. Department of Molecular Biology, Princeton University, NJ 08544, USA.

Abstract

In D. melanogaster the binary switch gene Sex-lethal (Sxl) plays a pivotal role in somatic sex determination -- when the Sxl gene is on the female pathway is followed, while the male pathway is followed when the gene is off. In the present study we have asked whether the Sxl gene is present in other species of the genus Drosophila and whether it is subject to a similar sex-specific on-off regulation. Sxl proteins were found in all of the drosophilids examined, and they display a sex-specific pattern of expression. Furthermore, characterization of the Sxl gene in the distant drosophilan relative, D. virilis, reveals that the structure and sequence organization of the gene has been well conserved and that, like melanogaster, alternative RNA processing is responsible for its sex-specific expression. Hence, this posttranscriptional on-off regulatory mechanism probably existed before the separation of the drosophilan and sophophoran subgenera and it seems likely that Sxl functions as a sex determination switch gene in most species in the Drosophila genus. Although alternative splicing appears to be responsible for the on-off regulation of the Sxl gene in D. virilis, this species is unusual in that Sxl proteins are present not only in females but also in males. The D. virilis female and male proteins appear to be identical over most of the length except for the amino-terminal approx. 25 aa which are encoded by the differentially spliced exons. In transcriptionally active polytene chromosomes, the male and female proteins bind to the same cytogenetic loci, including the sites corresponding to the D. virilis Sxl and tra genes. Hence, though the male proteins are able to interact with appropriate target pre-mRNAs, they are apparently incapable of altering the splicing pattern of these pre-mRNAs.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3