Encapsulation of Tinospora cordifolia plant in Ni doped TiO2 nanoparticles for the degradation of malachite green dye
-
Published:2023-07-27
Issue:
Volume:8
Page:
-
ISSN:2299-680X
-
Container-title:Nanofabrication
-
language:
-
Short-container-title:Nanofab
Author:
Thakur Naveen,Thakur Nikesh,Kumar Kuldeep,Arya Vedpriya,Kumar Ashwani
Abstract
The primary global source of water pollution is textile dyes. Highly stable organic dyes are produced by these industries that are released untreated into nearby ponds, lakes and rivers. This paper is devoted to synthesis of nickle doped anatase phase of TiO2 nanoparticles (Ni-ATD NPs) by encapsulating plant Tinospora cordifolia (TC) through microwave assisted method for degradation of malachite green (MG) dye. The synthesized NPs were calcinated at 400 oC temperature to achieve the anatase phase. The synthesized Ni-ATD NPs were analysed with different characterization methods. X-ray diffraction (XRD) and Raman analysis confirmed the crystalline nature for Ni-ATD NPs with a tetragonal structure having crystallite size of 11 nm. Scanning electron microscope (SEM) determined the spherical surface morphology for synthesized NPs. The absorption peaks of Ni-ATD NPs were originated from 360 to 370 nm from UV-Visible spectroscopy in which the bandgap was found to be 3.45 eV. The photocatalytic activity for MG dye was evaluated under ultra-violet (UV) light using Ni-ATD NPs for 90 minutes which exhibited the degradation up to 100 %.
Publisher
Eurasia Academic Publishing Group
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference44 articles.
1. Anu, Thakur, N., and Kumar, J., 2018. Synthesis and characterization of pure and Zn-doped copper oxide nanoparticles. International Journal of Advance Research in Science and Engineering, 7(8), pp.1-5. 2. Anu, Thakur, N., Kumar, K. and Sharma, K.K., 2020. Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorganic and Nano-Metal Chemistry, 50(10), pp.933-943. 3. Assayehegn, E., Solaiappan, A., Chebude, Y. and Alemayehu, E., 2020. Fabrication of tunable anatase/rutile heterojunction N/TiO2 nanophotocatalyst for enhanced visible light degradation activity. Applied Surface Science, 515, p.145966. 4. Balkrishna, A., Arya, V., Rohela, A., Kumar, A., Verma, R., Kumar, D., Nepovimova, E., Kuca, K., Thakur, N., Thakur, N. and Kumar, P., 2021a. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines, 9(10), p.1129. 5. Balkrishna, A., Kumar, A., Arya, V., Rohela, A., Verma, R., Nepovimova, E., Krejcar, O., Kumar, D., Thakur, N. and Kuca, K., 2021b. Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress. Oxidative medicine and cellular longevity, 2021, pp.1-20.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|