Affiliation:
1. Department of Earth Science, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, South Africa
2. Laboratory of Physics of Minerals and Functional Materials, Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620016, Russia, and Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia
Abstract
ABSTRACT
Finite deformation patterns of accessory phases can indicate the tectonic regime and deformation history of the host rocks and geological units. In this study, tectonically deformed, seismically deformed, and shocked zircon grains from a granite sample from the core of the Vredefort impact structure were analyzed in situ, using a combination of Raman spectroscopy, backscatter electron (BSE) imaging, electron backscattered diffraction (EBSD) mapping, electron probe microanalyses (EPMA), energy-dispersive X-ray spectroscopy (EDS) qualitative chemical mapping, and cathodoluminescence (CL) imaging. We aimed to reveal the effects of marginal grain-size reduction, planar deformation bands (PDBs), and shock microtwins on the crystal structure and microchemistry of zircon.
Deformation patterns such as PDBs, microtwins, and subgrains did not show any significant effect on zircon crystallinity/metamictization degree or on the CL signature. However, the ratio of Raman band intensities B1g (1008 cm–1) to Eg (356 cm–1) slightly decreased within domains with low misorientation. The ratio values were affected in shocked grains, particularly in twinned domains with high misorientation. B1g/Eg ratio mapping combined with metamictization degree mapping (full width at half maximum of B1g peak) suggest the presence of shock deformation features in zircon; however, due to the lower spatial resolution of the method, they must be used in combination with the EBSD technique. Additionally, we discovered anatase, quartz, goethite, calcite, and hematite micro-inclusions in the studied zircon grains, with quartz and anatase specifically being associated with strongly deformed domains of shocked zircon crystals.
Publisher
Geological Society of America
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献