Abstract
A highly resistant mineral, zircon is capable of preserving information about impact processes. The present review paper is aimed at determining the extent to which Raman spectroscopy can be applied to studying shocked zircons from impactites to identify issues and gaps in the usage of Raman spectroscopy, both in order to highlight recent achievements, and to identify the most effective applications. Method: Following PRISMA guidelines, the review is based on peer-reviewed papers indexed in Google Scholar, Scopus and Web of Science databases up to 5 April 2022. Inclusion criteria: application of Raman spectroscopy to the study of shocked zircon from terrestrial and lunar impactites. Results: A total of 25 research papers were selected. Of these, 18 publications studied terrestrial impact craters, while 7 publications focused on lunar breccia samples. Nineteen of the studies were focused on the acquisition of new data on geological structures, while six examined zircon microstructures, their textural and spectroscopic features. Conclusions: The application of Raman spectroscopy to impactite zircons is linked with its application to zircon grains of various terrestrial rocks and the progress of the electron backscatter diffraction (EBSD) technique in the early 2000s. Raman spectroscopy was concluded to be most effective when applied to examining the degree of damage, as well as identifying phases and misorientation in zircon.
Funder
Russian Science Foundation
Ministry of Science and Higher Education of Russian Federation
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献