Evidence for large departures from lithostatic pressure during Late Cretaceous metamorphism in the northern Snake Range metamorphic core complex, Nevada

Author:

Hoiland C.1,Hourigan J.2,Miller E.1

Affiliation:

1. Department of Geological Sciences, Stanford University, Stanford, California 94305, USA

2. Department of Earth and Planetary Sciences, University of California–Santa Cruz, Santa Cruz, California 95064, USA

Abstract

ABSTRACT The highest-grade Barrovian-type metamorphic rocks of the North American Cordillera exposed today are Late Cretaceous in age and found within an orogen-parallel belt of metamorphic core complexes for which the tectonic histories remain controversial. Thermobarometric studies indicate that many of these Late Cretaceous metamorphic assemblages formed at pressures of >8 kbar, conventionally interpreted as >30 km depth by assuming lithostatic conditions. However, in the northern Basin and Range Province, detailed structural reconstructions and a growing body of contradictory geologic data in and around the metamorphic core complexes indicate these metamorphic rocks are unlikely to have ever been buried any deeper than ~15 km depth (~4 kbar, lithostatic). Recent models controversially interpret this discrepancy as the result of “tectonic overpressure,” whereby the high-grade mineral assemblages were formed under superlithostatic conditions without significant tectonic burial. We performed several detailed studies within the Snake Range metamorphic core complex to test the possibility that cryptic structures responsible for additional burial and exhumation might exist, which would refute such a model. Instead, our data highlight the continued discordance between paleodepth and paleopressure and suggest the latter may have reached nearly twice the lithostatic pressure in the Late Cretaceous. First, new detrital zircon U-Pb geochronology combined with finite-strain estimates show that prestrain thicknesses of the lower-plate units that host the high-pressure mineral assemblages correspond closely to the thicknesses of equivalent-age units in adjacent ranges rather than to those of the inferred, structurally overridden (para) autochthon, inconsistent with cross sections and interpretations that assume a lower plate with a deeper origin for these rocks. Second, new Raman spectroscopy of carbonaceous material of upper- and lower-plate units identified an ~200 °C difference in peak metamorphic temperatures across the northern Snake Range detachment but did not identify any intraplate discontinuities, thereby limiting the amount of structural excision to motion on the northern Snake Range detachment itself, and locally, to no more than 7–11 km. Third, mapped geology and field relationships indicate that a pre-Cenozoic fold truncated by the northern Snake Range detachment could have produced ~3–9 km of structural overburden above Precambrian units, on the order of that potentially excised by the northern Snake Range detachment but still far short of expected overburden based on lithostatic assumptions. Fourth, finite-strain measurements indicate a shortening (constrictional) strain regime favorable to superlithostatic conditions. Together, these observations suggest that pressures during peak metamorphism may have locally reached ~150%–200% lithostatic pressure. Such departures from lithostatic conditions are expected to have been most pronounced above regions of high heat flow and partial melting, and/or at the base of regional thrust-bounded allochthons, as is characteristic of the spatial distribution of Cordilleran metamorphic core complexes during the Late Cretaceous Sevier orogeny.

Publisher

Geological Society of America

Reference145 articles.

1. Stratigraphic uncertainty and errors in shortening from balanced sections in the North American Cordillera;Allmendinger;Geological Society of America Bulletin,2013

2. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks;Aoya;Journal of Metamorphic Geology,2010

3. Cordilleran metamorphic core complexes—From Arizona to southern Canada;Armstrong;Annual Review of Earth and Planetary Sciences,1982

4. The Snake Range décollement interpreted as a major extensional shear zone;Bartley;Tectonics,1984

5. Mesozoic contact metamorphism in the western United States;Barton,1988

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural Relationships Across the Sevier Gravity Slide of Southwest Utah and Implications for Catastrophic Translation and Emplacement Processes of Long Runout Landslides;Geochemistry, Geophysics, Geosystems;2023-05

2. Timing and structural evolution of the Sevier thrust belt, western Wyoming;Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma);2022-05-03

3. Zircon petrochronology of Cretaceous Cordilleran interior granites of the Snake Range and Kern Mountains, Nevada, USA;Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma);2022-05-03

4. The “death” of the Sevier-Laramide orogen: Gravitational collapse of the crust or something else?;Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma);2022-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3