The relationship between active learning, course innovation, and teaching Earth systems thinking: A structural equation modeling approach

Author:

Soltis Nicholas A.1,McNeal Karen S.1,Forbes Cory T.2,Lally Diane2

Affiliation:

1. Department of Geosciences, Auburn University, 2050 Beard Eaves Coliseum, Auburn, Alabama 36849, USA

2. School of Natural Resources, University of Nebraska–Lincoln, Hardin Hall, 3310 Holdrege Street, Lincoln, Nebraska 68583-0961, USA

Abstract

AbstractEarth systems thinking (EST), or thinking of the Earth as a complex system made up of interworking subsystems, has been shown to reflect the highest level of knowing and understanding in the geosciences. Previous work has found four frameworks of EST that repeatedly appear in the geoscience education literature. This study aims to quantitatively build on this work by employing structural equation modeling to understand the current state of EST teaching as shown by the 2016 iteration of the National Geoscience Faculty Survey (United States; n = 2615). Exploratory and confirmatory factor analyses were conducted on survey items to understand and develop three models, one for EST teaching practices, one for course changes, and one for active-learning teaching practices. Analyses revealed that reported EST teaching practices relate back to the four EST frameworks proposed in the literature. The three models explored in this study were used to build a full structural model, where it was hypothesized that active-learning teaching practices would predict EST course changes and EST teaching. However, the model revealed that EST course changes mediate, or bring about, the relationship between active-learning teaching practices and EST teaching. In other words, the relationship between active-learning and EST teaching practices is not direct. This implies the need for continued efforts to provide professional development opportunities in both active-learning teaching practices and EST, as active-learning practices are not sufficient to implicitly teach EST skills. Results also revealed that the teaching approaches that emphasize modeling and complexity sciences had the weakest relationship to the broader EST teaching practices, suggesting a need for more professional development opportunities as they relate to systems modeling, quantitative reasoning, and complexity sciences in the context of the Earth sciences.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference54 articles.

1. The effects of problem-based active learning in science education on students’ academic achievement, attitude and concept learning;Akınoğlu;Eurasia Journal of Mathematics, Science and Technology Education,2007

2. Effect of a soil microbial activity laboratory on student learning;Appel;NACTA Journal,2014

3. A definition of systems thinking: A systems approach;Arnold;Procedia Computer Science,2015

4. Development of system thinking skills in the context of earth system education;Assaraf;Journal of Research in Science Teaching,2005

5. Understanding science: Why causes are not enough;Berger;Philosophy of Science,1998

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3