Cambrian−Ordovician magmatic flare-up in NE Gondwana: A silicic large igneous province?

Author:

Dan Wei12,Murphy J. Brendan34,Tang Gong-Jian12,Zhang Xiu-Zheng12,White William M.5,Wang Qiang126

Affiliation:

1. 1State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. 2CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China

3. 3Department of Earth Sciences, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada

4. 4Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, WA 6845, Australia

5. 5Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA

6. 6College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 10049, China

Abstract

The origin of the Cambrian−Ordovician tectono-magmatic events affecting NE Gondwana and the adjacent peri-Gondwanan terranes (e.g., Himalaya, Lhasa, Southern Qiangtang, Baoshan, Tengchong, Sibumasu, Helmand, and Karakorum) is controversial. Although its volume is poorly constrained, we propose that an extensive belt of granitic rocks that formed in various pulses between ca. 510 Ma and 460 Ma may represent the remains of a potential silicic large igneous province (LIP), which is referred to here as the Pinghe silicic LIP, with an areal extent of ∼2.5 Mkm2. The putative Pinghe silicic LIP is composed predominantly of S-type granites with subordinate A-type granites and minor intraplate mafic rocks. The recognition of this belt of granitic rocks aids in the refinement of tectonic reconstructions of Gondwana and of models for the rifting of terranes from its northern margin. The Pinghe silicic LIP broadly coincides with the adjacent 511 Ma Kalkarindji LIP in northern Australia, and the plume or mantle upwelling that triggered the Kalkarindji LIP may have been responsible for driving crustal melting that generated the granitic rocks, in a manner analogous to the Karoo−Chon Aike association.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3