Geochemical Characteristics and Geological Significance of Black Shale at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Platform, South China

Author:

Li Jiaqi1ORCID,Kang Zhihong1,Kang Zhijiang2,Zhang Xuemei3

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

2. SINOPEC Exploration and Production Research Institute, Beijing 100083, China

3. School of Geosciences, China University of Petroleum, Qingdao 266580, China

Abstract

Black shale, as an important unconventional energy resource, has attracted significant attention in recent years. By studying its sedimentary and geochemical characteristics, it is possible to reconstruct ancient depositional environments and paleoclimatic conditions. The Lower Cambrian black shale is widely distributed in the Lower Yangtze region, but its tectonic background and provenance have been subject to debate. In this study, we conducted geochemical testing and analysis on samples collected from the basal black shale of the Mufushan Formation in the Mufushan section, Nanjing. The Th/Sc-Zr/Sc diagram indicates that the black shale of the Mufushan Formation has not undergone sedimentary recycling. Analysis of major element ratios, rare earth element (REE) distribution patterns, δEu, (La/Yb)N, and the La/Th-Hf and La/Yb-∑REE discrimination diagrams suggest that the source rocks of the black shale mainly consist of granites and sedimentary rocks rich in ferromagnesian minerals, representing felsic rocks derived from the upper crust, with some involvement of mafic rocks. Considering the provenance attributes, geological age relationships, and tectonic evolution of the South China continent, the granite component in the source rocks is inferred to have formed during Neoproterozoic magmatic activity, and the source area corresponds to the Jiangnan Orogenic Belt. Analysis of K2O + Na2O-SiO2, K2O/Na2O-SiO2/Al2O3, La-Th-Sc, Th-Co-Zr/10, and Th-Sc-Zr/10 diagrams suggests that the source area of the Mufushan Formation black shale was a passive continental margin.

Funder

Joint Fund for Enterprise Innovation and Development of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3