Coriolis effect recorded in Late Pleistocene Marine Isotope Stage 5e Bahamian aeolianites

Author:

Rendall Ben1,Wilson Kat1,Kerans Charles1,Helper Mark1,Mohrig David1

Affiliation:

1. Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA

Abstract

Abstract The windward islands of the Lucayan Archipelago (Bahamas) form an Atlantic Ocean–facing transect spanning >950 km in length and 6° of latitude. The islands' topography is largely constructed from carbonate wind-blown dunes (i.e., aeolianites) deposited during the interglacial phases of the Late Pleistocene and Holocene. New digital elevation data from satellite radar interferometry (TanDEM-X German Earth observation satellite) enables a step change in the ability to map and quantify Bahamian aeolian landforms across the archipelago. A semi-automated mapping approach that leverages object-based image analysis yields a total aeolianite area of ~1674 km2 across Great Abaco, Eleuthera, Cat, San Salvador, Long, Crooked, Acklins, and Mayaguana islands (Bahamas) and the Turks and Caicos Islands. Longitudinal axis measurements from 747 Pleistocene parabolic dunes record increasing consistency of east-west orientation with decreasing latitude. Three U.S. National Data Buoy Center data buoys provided modern wind direction and velocity measurements (n = 730,933 of each) along this transect. Analysis of wind vectors (>P90 [90th percentile], n = 70,095) demonstrates increasing organization of easterlies at southern latitudes and an offset in directionality compared to formational winds of Pleistocene Marine Isotope Stage (MIS) 5e deposits. Southward trends of increasing wind strength and consistency reflect geostrophic flow driven by atmospheric circulation within the Hadley cell and right-hand deflection of the Coriolis effect in the Northern Hemisphere. We propose that the offset in directionality between dune axes and modern wind vectors is related to changes in latitudinal width of the Hadley cell from the Late Pleistocene (MIS 5e) to today. This data set is robust enough to serve as a benchmark against which future atmospheric circulation models can be compared.

Publisher

Geological Society of America

Subject

Geology

Reference25 articles.

1. Modern and Ancient Carbonate Eolianites: Sedimentology, Sequence Stratigraphy, and Diagenesis;Abegg;SEPM (Society for Sedimentary Geology) Special Publication 71,2001

2. Sedimentary architecture of Pleistocene eolian calcarenites, San Salvador Island, Bahamas;Caputo,1995

3. Precise chronology of the last interglacial period; 234U-230Th data from fossil coral reefs in the Bahamas;Chen;Geological Society of America Bulletin,1991

4. Sea-level rise due to polar ice-sheet mass loss during past warm periods;Dutton;Science,2015

5. Methodology for reconstructing wind direction, wind speed and duration of wind events from aeolian cross-strata;Eastwood;Journal of Geophysical Research,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3