Carbonate collapse and the late Paleozoic ice age marine biodiversity crisis

Author:

Balseiro Diego12,Powell Matthew G.3

Affiliation:

1. Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611 Ciudad Universitaria, X5016GCA Cordoba, Argentina

2. Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), X5016GCA Cordoba, Argentina

3. Department of Geology, Juniata College, 1700 Moore Street, Huntingdon, Pennsylvania 16652, USA

Abstract

AbstractThe late Paleozoic ice age (LPIA) was characterized by persistently low diversity of marine invertebrates following a second-order mass extinction. Here, we used a data set of North American (paleotropical) fossil occurrences of brachiopod, bivalve, and coral genera from the Paleobiology Database, combined with lithologic data from Macrostrat, to demonstrate that low diversity was caused by the collapse of carbonate environments during the LPIA. After dividing the data by lithology, low diversity was evident only in carbonate environments, whereas diversity within siliciclastic environments actually increased during the LPIA, after a brief decline in the Serpukhovian (late Mississippian). Diversity patterns closely matched respective changes in the volume of carbonate and siliciclastic rocks. The contrasting patterns observed in the two environments suggest that habitat loss was a direct cause of changes in diversity, because other factors, such as temperature, would have affected genera in both environments. A causal relationship is also supported by the finding that diversity remained high in carbonate refugia (carbonate beds within majority-siliciclastic formations) until the Bashkirian, postdating the onset of icehouse conditions by ∼8 m.y. Our results provide a unifying, mechanistic explanation for the distinctive characteristics of the biotic impact, including its disproportionate effect on the tropical marine invertebrate fauna, prolonged recovery from extinction, low macroevolutionary rates during the recovery interval, and regional differences in its expression.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3