Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards

Author:

Watt Janet T.1ORCID,Brothers Daniel S.1

Affiliation:

1. Pacific Coastal and Marine Science Center, U.S. Geological Survey, 2885 Mission Street, Santa Cruz, California 95060, USA

Abstract

Abstract Studies of recent destructive megathrust earthquakes and tsunamis along subduction margins in Japan, Sumatra, and Chile have linked forearc morphology and structure to megathrust behavior. This connection is based on the idea that spatial variations in the frictional behavior of the megathrust influence the tectono-morphological evolution of the upper plate. Here we present a comprehensive examination of the tectonic geomorphology, outer wedge taper, and structural vergence along the marine forearc of the Cascadia subduction zone (offshore northwestern North America). The goal is to better understand geologic controls on outer wedge strength and segmentation at spatial scales equivalent to rupture lengths of large earthquakes (≥M 6.7), and to examine potential linkages with shallow megathrust behavior. We use cross-margin profiles, spaced 25 km apart, to characterize along-strike variation in outer wedge width, steepness, and structural vergence (measured between the toe and the outer arc high). The width of the outer wedge varies between 17 and 93 km, and the steepness ranges from 0.9° to 6.5°. Hierarchical cluster analysis of outer wedge width and steepness reveals four distinct regions that also display unique patterns of structural vergence and shape of the wedge: Vancouver Island, British Columbia, Canada (average width, linear wedge, seaward and mixed vergence); Washington, USA (higher width, concave wedge, landward and mixed vergence); northern and central Oregon, USA (average width, linear and convex wedge, mixed and seaward vergence); and southern Oregon and northern California, USA (lower width, convex wedge, seaward and mixed vergence). Variability in outer wedge morphology and structure is broadly associated with along-strike megathrust segmentation inferred from differences in oceanic asthenospheric velocities, patterns of episodic tremor and slow slip, GPS models of plate locking, and the distribution of seismicity near the plate interface. In more detail, our results appear to delineate the extent, geometry, and lithology of dynamic and static backstops along the margin. Varying backstop configurations along the Cascadia margin are interpreted to represent material-strength contrasts within the wedge that appear to regulate the along- and across-strike taper and structural vergence in the outer wedge. We argue that the morphotectonic variability in the outer wedge may reflect spatial variations in shallow megathrust behavior occurring over roughly the last few million years. Comparing outer wedge taper along the Cascadia margin to a global compilation suggests that observations in the global catalog are not accurately representing the range of heterogeneity within individual margins and highlights the need for detailed margin-wide morphotectonic analyses of subduction zones worldwide.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference154 articles.

1. Earthquake outlook for the San Francisco Bay region 2014–2043 (ver. 1.1, August 2016);Aagaard,2016

2. Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux;Adam;Tectonics,2004

3. Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington;Atwater,1997

4. Morphology of the Explorer–Juan de Fuca slab edge in northern Cascadia: Imaging plate capture at a ridge-trench-transform triple junction;Audet;Geology,2008

5. Erosional response to northward-propagating crustal thickening in the coastal ranges of the U.S. Pacific Northwest;Balco;American Journal of Science,2013

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3