Reworked pollen reduces apparent floral change during the Paleocene-Eocene Thermal Maximum

Author:

Korasidis Vera A.12,Wing Scott L.1,Nelson David M.3,Baczynski Allison A.4

Affiliation:

1. 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA

2. 2School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, VIC 3010, Australia

3. 3Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland 21532, USA

4. 4Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract

Abstract Plant megafossils from the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, north-central Wyoming, USA, document a dramatic shift in floral composition, whereas palynofloral change from the same sections has appeared to be more subtle. We investigated this discrepancy by quantifying pollen preservation and measuring the stable carbon isotope composition of specific pollen taxa. Pollen grains belonging to two common latest Paleocene taxa are poorly preserved in PETM samples, and their δ13Cpollen is similar during the latest Paleocene and PETM. In contrast, pollen grains of a thermophilic taxon that became more abundant during the PETM are pristine, and the δ13Cpollen of PETM specimens is ∼4‰ lower than that of latest Paleocene specimens. More broadly, pollen grains belonging to lineages currently centered in temperate climates are poorly preserved when found in PETM samples, whereas in the same samples, pollen belonging to lineages now centered in the tropics are well preserved. These differences in preservation and isotopic composition indicate extensive redeposition of older pollen grains during the PETM. Increased abundance of Cretaceous palynotaxa in PETM samples confirms erosion and redeposition, likely resulting from more episodic and intense precipitation. Exclusion of reworked palynotaxa from analyses reveals that, as in the megaflora, temperate taxa were absent during the PETM at the time when dry tropical taxa briefly appeared. Major climate changes like the PETM may commonly destabilize landscapes, increase reworking, and thus smooth patterns of change in microfloras, leading to underestimates of the rate and magnitude of floral response to past global change.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3