Interacting effects of fire and hydroclimate on oak and beech community prevalence in the southern Great Lakes region

Author:

Schlenker Nora1ORCID,Johnson Jonathan2ORCID,Ray‐Cozzens Tessa3,Stefanova Vania4,Nelson David M.2ORCID,Shuman Bryan N.3ORCID,Williams John W.1ORCID

Affiliation:

1. Department of Geography University of Wisconsin‐Madison Madison Wisconsin USA

2. Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg Maryland USA

3. Department of Geology and Geophysics University of Wyoming Wyoming USA

4. Department of Earth and Environmental Sciences University of Minnesota Minneapolis Minnesota USA

Abstract

Abstract Rising temperatures, increasing hydroclimate variability and intensifying disturbance regimes increase the risk of rapid ecosystem conversions. We can leverage multi‐proxy records of past ecosystem transformations to understand their causes and ecosystem vulnerability to rapid change. Prior to Euro‐American settlement, northern Indiana was a mosaic of prairie, oak‐dominated forests/woodlands and beech‐dominated hardwood forests. This heterogeneity, combined with well‐documented but poorly understood past beech population declines, make this region ideal for studying the drivers of ecosystem transformations. Here, we present a new record from Story Lake, IN, with proxies for vegetation composition (pollen), fire (charcoal) and beech intrinsic water use efficiency (δ13C of beech pollen; δ13Cbeech). Multiple proxies from the same core enable clear establishment of lead–lag relationships. Additionally, δ13Cbeech enables direct comparisons between beech population abundance and physiological responses to changing environments. We compare Story Lake to a nearby lake‐level reconstruction and to pollen records from nearby Pretty and Appleman Lakes and the distal Spicer Lake, to test hypotheses about synchrony and the spatial scale of governing processes. The 11.7 ka sediment record from Story Lake indicates multiple conversions between beech‐hardwood forest and oak forest/woodland. Beech pollen abundances rapidly increased between 7.5 and 7.1 ka, while oak declined. Oak abundances increased after 4.6 ka and remained high until 2.8 ka, indicating replacement of mesic forests by oak forest/woodland. At 2.8 ka, beech abundances rapidly increased, indicating mesic forest reestablishment. Beech and oak abundances correlate with charcoal accumulation rates but beech abundance is not correlated with δ13Cbeech. Fluctuations in beech abundances are synchronous among Story, Appleman and Pretty Lakes, but asynchronous between Story and Spicer Lakes, suggesting regulation by local‐scale vegetation‐fire‐climate feedbacks and secondarily by regional‐scale drivers. Holocene forest composition and fire dynamics appear to be closely co‐regulated and may be affected by local to regional climate variations. The importance of extrinsic drivers and positive/negative feedbacks changes over time, with higher ecoclimate sensitivity before 2.8 ka and greater resilience afterwards. Synthesis: Overall, oak‐ and beech‐dominated ecosystems were highly dynamic over the Holocene, with multiple ecosystem conversions driven by shifting interactions among vegetation, hydroclimate and fire regime.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3