Multiscale petrographic heterogeneity and their implications for the nanoporous system of the Wufeng-Longmaxi shales in Jiaoshiba area, Southeast China: Response to depositional-diagenetic process

Author:

Wang Yuxuan1,Xu Shang1,Hao Fang2,Zhang Baiqiao1,Shu Zhiguo3,Gou Qiyang1,Lu Yangbo1,Cong Fuyun1

Affiliation:

1. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China

2. School of Geosciences, China University of Petroleum, Qingdao 266580, China

3. Research Institute of Petroleum Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan 430223, China

Abstract

Abstract The organic matter-rich shales in Wufeng-Longmaxi Formation, Jiaoshiba area, Southeast China, are showing a notable petrographic heterogeneity characteristic within the isochronous stratigraphic framework, which lead to vast differences in the mineral composition and organic matter abundance in the adjacent sections of the shale reservoir. The studied shale has been divided into three systems tracts: a transgressive systems tract (TST), an early highstand systems tract (EHST), and a late highstand systems tract (LHST). Multiple-scale petrographic observation and detailed mineralogical and geochemical analyses were combined to investigate the manifestation, origin, and the ways by which the shale heterogeneity is affected. The results indicate that polytropic depositional environments lead to different components in sediment. Subsequently, these differences among shale sections become more apparent through different diagenetic pathways. During the deposition of the section TST, the Hirnantian glaciation and regional volcanism played a crucial role, contributing to the abundant accumulation of fine-grained intrabasinal silica and organic matter. In diagenesis stage, authigenic quartz aggregates derived from siliceous organisms are formed. They filled in primary interparticle pores, forming a rigid particle-bracing structure that provide effective resistivity against the compaction and spaces for organic matter migration and occlusion. Finally, the migrated organic matter left plenty of newly created pore spaces that constituted a great portion of the total porosity of shale reservoir. The depositional process of section EHST is strongly influenced by contour current, which brings about more extrabasinal influx and impoverishes organic matter. In diagenesis stage, the rigid particle-bracing structure could only be preserved in limited areas, since insufficient siliceous supply could not produce enough authigenic quartz. Primary interparticle pores are significantly reduced owing to compaction, leaving less space for later organic matter migration and occlusion. As a result, the total porosity of shale reservoir declines in this section. In a rapid tectonic-uplifting background, the deposition of section LHST is associated with a rapid increase in terrigenous clay minerals, which further dilutes organic matter. Ductile clay experienced strong compaction and then occupies most of the primary interparticle space. Rigid particles are wrapped by a large number of clays, which has destroyed the particle-bracing structure. As a result, the nanoporous system in the shale could not be well preserved.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3