Differential Development Mechanisms of Pore Types under the Sequence Stratigraphic Constraints of the Wufeng–Longmaxi Formation Shale from the Upper Yangtze Platform

Author:

Wang Xinlei1ORCID,Xi Zhaodong1ORCID,Yan Zhifeng2,Zhang Songhang1ORCID,Tang Shuheng1,Lin Donglin1

Affiliation:

1. School of Energy Resource, China University of Geosciences, Beijing 100083, China

2. Liaoning Key Laboratory of Green Development of Mineral Resources, Liaoning Technical University, Fuxin 123032, China

Abstract

Various types of pores, including organic and inorganic variations, exhibit distinct impacts on the storage capacity of shale gas reservoirs and play a significant role in shale gas occurrence. However, there is a limited number of studies that have quantitatively addressed the developmental characteristics of these diverse pore types and their primary controlling factors. This paper explores the development of inorganic pores, specifically interparticle pores and intraparticle pores, as well as organic matter (OM) pores within the shales of the Wufeng–Longmaxi Formation in the Upper Yangtze region. Parameters such as areal porosity, pore diameter, and pore number based on the FE-SEM and image digitization are discussed. Additionally, the influence of the sedimentary environment on the development of various pore types through integrated wavelet transform techniques and geochemical analysis are analyzed. This analysis reveals the distinctive mechanisms governing the development of pore types under the sequence stratigraphic constraints. The findings reveal that the Wufeng–Longmaxi Formation within the study area can be classified into four systems tracts (transgressive systems tracts TST1 and TST2, and highstand systems tracts HST1 and HST2). Within TST1+HST1, OM pores emerge as the predominant pore type, contributing to over 65% of the porosity. TST2 similarly displays OM pores as the dominant type, comprising over 45% of the total porosity, with an average OM areal porosity of 7.3%, notably lower than that of TST1+HST1 (12.7%). Differences in OM pore development between TST1+HST1 and TST2 shales are attributed to variations in OM abundance and type. In HST2, inorganic pores are the dominant pore type, primarily consisting of interparticle pores associated with clay minerals, contributing to more than 50% of the porosity, while OM pores remain almost undeveloped. The frequent sea level fluctuations during the sequence stratigraphic evolution caused variations in sedimentary environments across different depositional sequences. These differing depositional environments lead to varying OM content and types, mineral genesis, and content, ultimately resulting in disparities in the development of shale pore types within different sequences.

Funder

Key Project of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3