Kill dates from re-exposed black mosses constrain past glacier advances in the northern Antarctic Peninsula

Author:

Groff Dulcinea V.12,Beilman David W.3,Yu Zicheng245,Ford Derek3,Xia Zhengyu24

Affiliation:

1. 1Department of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 82073, USA

2. 2Department of Earth & Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA

3. 3Department of Geography & Environment, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA

4. 4Key Laboratory of Geographical Processes & Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin 130024, China

5. 5Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography & Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China

Abstract

AbstractGlaciers are receding in the northern Antarctic Peninsula and exposing previously entombed soils and plants. We used 39 black (dead) mosses collected from rapidly retreating ice margins at four sites along the Antarctic Peninsula to determine the kill dates using radiocarbon measurements and to constrain the timing of past glacier advances over the last 1500 yr. We established strict new criteria for sample collection to promote robust estimates of plant death. We found distinct phases of ice advance during ca. 1300, 800, and 200 calibrated years before 1950 (cal yr B.P.). We report estimates of the rate of glacier advance at ca. 800 cal yr B.P. at Gamage and Bonaparte Points (southern Anvers Island) of 2.0 and 0.3 m/yr, respectively. Although the range of kill dates is relatively narrow within a region, suggesting multiple glaciers advanced simultaneously, the rates of local advances can vary by almost an order of magnitude and are much less than retreat rates. Our kill dates coincide with evidence for glacier advances from other studies in the northern Antarctic Peninsula at ca. 1300, 800, and 200 cal yr B.P. and for penguin colony abandonment at several sites in the region ranging from 450 to 0 cal yr B.P. The combination of our new terrestrial evidence for glacier advances with other lines of evidence shows the regional synchroneity of glacial dynamics and cryosphere-biosphere connections during rapid climate shifts and the sensitivity of terrestrial ecosystems to climate cooling.

Publisher

Geological Society of America

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3