A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic implications

Author:

Björck Svante,Håkansson Hannelore,Zale Rolf,Karlén Wibjörn,Jönsson Bodil Liedberg

Abstract

Analysis of a 1.5 m thick sediment sequence from Midge Lake, Byers Peninsula, Livingston Island, shows that the lake and its catchment have undergone significant changes during the last 4000 years. Radiocarbon dating (AMS), sediment lithology, and microfossil analyses indicate that the lake was deglaciated over 4000 14C years ago. Distinct peaks in accumulation rates of sediment, Pediastrum algae, pollen and spores, as well as changes in the diatom assemblage, suggest significant environmental changes between ca 3200 and 2700 y BP. These changes are interpreted as reflecting a milder and more humid, maritime climate. The increased humidity can explain independent observations of glacier growth during this period. The combined data also indicate that between ca 1500 and 500 y BP the area might have experienced more continental conditions with slightly colder and drier climate than today. Since the 14C dates from the Midge Lake sediments are regarded as reliable and the sediment sequence is rich in tephra layers this sediment sequence will be critical for a forthcoming tephra chronology of the region.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3