An Evolutionary Feature Clustering Approach for Anomaly Detection Using Improved Fuzzy Membership Function

Author:

Kumar Gunupudi Rajesh1ORCID,Gugulothu Narsimha2,Nimmala Mangathayaru1

Affiliation:

1. VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

2. JNTUH, Hyderabad, India

Abstract

Traditionally, IDS have been developed by applying machine learning techniques and followed single learning mechanisms or multiple learning mechanisms. Dimensionality is an important concern which affects classification accuracies and eventually the classifier performance. Feature selection approaches are widely studied and applied in research literature. In this work, a new fuzzy membership function to detect anomalies and intrusions and a method for dimensionality reduction is proposed. CANN could not address R2L and U2R attacks and have completely failed by showing these attack accuracies almost zero. Following CANN, the CLAPP approach has shown better classifier accuracies when compared to classifiers kNN, and SVM. This research aims at improving the accuracy achieved by CLAPP, CANN, and kNN. Experimental results show accuracies obtained using proposed approach is better when compared to other existing approaches. In particular, the detection of U2R and R2L attacks to user accuracies are recorded to be very much promising.

Publisher

IGI Global

Subject

General Computer Science

Reference44 articles.

1. Aaron, H. R. S., & Adae, I. (2014). Seven Techniques for Dimensionality Reduction. Knime. Retrieved from https://www.knime.com/blog/seven-techniques-for-data-dimensionality-reduction

2. A survey of network anomaly detection techniques

3. Semi-supervised multi-layered clustering model for intrusion detection

4. Intrusion Detection System Based on Modified K-means and Multi-level Support Vector Machines

5. A web engineering security methodology for e-learning systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3