Affiliation:
1. SRM University Delhi-NCR, Sonipat, India
2. Al-Nahrain University, Baghdad, Iraq
Abstract
Medicinal services experts experience significant levels of word-related worry because of their working conditions. Subsequently, the point of this study is to build up a model that spotlights human services experts in order to break down the impact that activity requests, control, social help, and acknowledgment have on the probability that a specialist will experience pressure. The authors have beforehand presented a technique for pitch highlight identification utilizing a convolutional neural network (CNN) that yields great execution utilizing low-level acoustic descriptors alone, with no express span data. This paper utilizes this model for different pitch complement and lexical pressure discovery errands at the word and syllable level on the DIRNDL German radio news corpus. This research demonstrates that data on word or syllable span is encoded in the elevated level CNN include portrayal via preparing a direct relapse model on these highlights to foresee term.
Subject
Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献