Author:
Dahiya Neeraj,Sharma Yogesh Kumar,Rani Uma,Hussain Shekjavid,Nabilal Khan Vajid,Mohan Anand,Nuristani Nasratullah
Abstract
AbstractHuman monkeypox is a very unusual virus that can devastate society. Early identification and diagnosis are essential to treat and manage an illness effectively. Human monkeypox disease detection using deep learning models has attracted increasing attention recently. The virus that causes monkeypox may be passed to people, making it a zoonotic illness. The latest monkeypox epidemic has hit more than 40 nations. Computer-assisted approaches using Deep Learning techniques for automatically identifying skin lesions have shown to be a viable alternative in light of the fast proliferation and ever-growing problems of supplying PCR (Polymerase Chain Reaction) Testing in places with limited availability. In this research, we introduce a deep learning model for detecting human monkeypoxes that is accurate and resilient by tuning its hyper-parameters. We employed a mixture of convolutional neural networks and transfer learning strategies to extract characteristics from medical photos and properly identify them. We also used hyperparameter optimization strategies to fine-tune the Model and get the best possible results. This paper proposes a Yolov5 model-based method for differentiating between chickenpox and Monkeypox lesions on skin pictures. The Roboflow skin lesion picture dataset was subjected to three different hyperparameter tuning strategies: the SDG optimizer, the Bayesian optimizer, and Learning without Forgetting. The proposed Model had the highest classification accuracy (98.18%) when applied to photos of monkeypox skin lesions. Our findings show that the suggested Model surpasses the current best-in-class models and may be used in clinical settings for actual Human Monkeypox disease detection and diagnosis.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI-Powered Paradigm Shift;Advances in Medical Technologies and Clinical Practice;2024-06-28
2. Advanced Deep Learning Approaches for Alzheimer's Disease;Advances in Medical Technologies and Clinical Practice;2024-06-28
3. Advanced Learning and Bioinformatics in Innovative Drug Discovery Towards Bridging Biology;Advances in Healthcare Information Systems and Administration;2024-04-19
4. A Comparative Analysis of Federated Learning and Privacy-Preserving Techniques in Healthcare AI;Advances in Healthcare Information Systems and Administration;2024-04-19
5. Ethical and Legal Considerations in Machine Learning;Advances in Bioinformatics and Biomedical Engineering;2024-04-05