Training Law Enforcement Officers to Identify Reliable Deception Cues With a Serious Digital Game

Author:

Miller Claude H.1ORCID,Dunbar Norah E.2,Jensen Matthew L.1,Massey Zachary B.1,Lee Yu-Hao3,Nicholls Spencer B.2ORCID,Anderson Chris1,Adams Aubrie S.4,Cecena Javier Elizondo1,Thompson William M.1,Wilson Scott N.1

Affiliation:

1. University of Oklahoma, USA

2. University of California, Santa Barbara, USA

3. University of Florida, USA

4. California Polytechnic State University, USA

Abstract

Extant research indicates that professional law enforcement officers (LEOs) are generally no better than untrained novices at detecting deception. Moreover, traditional training methods are often less effective than no training at all at improving successful detection. Compared to the traditional training, interactive digital games can provide an immersive learning environment for deeper internalization of new information through simulated practices. VERITAS—an interactive digital game—was designed and developed to train LEOs to better detect reliable deception cues when questioning suspects and determining the veracity of their answers. The authors hypothesized that reducing players' reactance would mitigate resistance to training, motivate engagement with materials, and result in greater success at deception detection and knowledge. As hypothesized, LEOs playing VERITAS showed significant improvement in deception detection from the first to the second scenario within the game; and the low-reactance version provided the most effective training. The authors also compared various responses to the game between LEOs and a separate undergraduate student sample. Relative to students, findings show LEOs perceived VERITAS to be significantly more intrinsically motivating, engaging, and appealing as a deception detection activity.

Publisher

IGI Global

Subject

Developmental and Educational Psychology,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3