YOLO-IP

Author:

Nayak Rashmiranjan1ORCID,Dwivedi Prashant1,Pati Umesh Chandra1ORCID

Affiliation:

1. National Institute of Technology, Rourkela, India

Abstract

The food security of any country may be jeopardized due to improper management of agricultural insect pests. Accurate pest detection and efficient pest control strategies must be employed in time to grow healthy crops for achieving food security in a country and worldwide. Hence, developing efficient and robust techniques to detect agricultural insect pests using computer vision approaches is one of the essential steps for timely managing insect pests. This chapter presents a short survey of deep learning-based object detection techniques focusing on insect pest detection and associated insect pest image datasets. Subsequently, a transfer learning-based custom You Only Look Once (YOLOv5) model is developed using the publicly available dataset IP102 for detecting agricultural insect pests with the help of computer vision approaches. The hyperparameters of the proposed insect pest detector are optimized using the genetic algorithm-based hyperparameter evolution method. The performance metrics of the proposed insect pest detector are found to be promising.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3